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ABSTRACT 

The total spaces of principal SU(n- 1) bundles over S 2n-1 are classified. 
The classification of Sp (n - I) bundles over S 4n- 1 is studied as well. As an 
intermediate step the homotopy equivalences of SU and Sp are classified. 

O. Introduction 

In their study of  the non-cancellation phenomenon of cartesian products 

Hilton and Roitberg [3] investigated the homotopy type of  principal S 3 bundles 

over spheres. From the point of view of  the theory of finite CWH-spaces the 

most interesting case was that  of  principal S 3 bundles over S 7 as the bundle 

classified by 7w E zr6(S 3) turned out to be a newly discovered H-space whose 

homotopy type is different from that of  Sp(2) and S 3 x S 7 (the only previously 

known H-spaces of type 3, 7). 

Since then, other finite CW-H-spaces which are principal classical group 

bundles over spheres were discovered: [2], [4], and [7]. Combining the results 

of  [6] and [7] one has: 

THEOREM 0.1. Let G(n,d),d be one of the following: SO(n),l ,  SU(n),2, 

or Sp(n),4. Let ~ = (G(n - l , d )  ~ G(n,d) s S d"-x) be the classical fiber bundle 

(dn-1  - o d d ) .  Denote by m(n,d,2) the total space of the fiber bundle h*(e) 

induced by a map hz: S n"-a ~ S d"-a of degree 2. Then: 

(a) I f  2 is odd then M(n, d,2) is an H-space. 

(b) If  n d - 1  ~ 3,7 and M(n,d,2) admits an H-structure then 2 is odd. 
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From the point of  view of  the classification problem of  finite CW-H-spaces 

one would like to know how many homotopy types do the (M(n, d, 2)} represent. 

This question of  course amounts to the very fundamental problem of  classifying 

the total spaces of  principal G ( n - l , d )  bundles over S d"-I . 

In this note we give a complete answer for that question in case d = 2 and a 

partial one for d = 4. 

THEOREM A. (a ) I f  d = 2 or4 andM(n,d ,2)  ~ M(n ,d ,2 ' ) then  

2 = _ 2' rood (dn /2-1)  ! 

(b) I f  2 - _+ 2' mod k(n, d) then m(n,  d, 2) ~ m(n,  d,),') where k(n, d) is the 

order of the cyclic group lzdn_2(G(n-l,d)): 

k(n,2) = (n - 1) ! 

~( 2n - 1) ! if  n is odd 

k(n, 4) = ~ 2 [ ( 2 n -  1)!] if  n is even. 

Note that if d = 2 or n is odd (a) and (b) give a necessary and sufficient con- 

dition for m(n, d, 2) ~ m(n, d, 2') .  

COROLLARY. Suppose 'dn > 8. I f  d= 2 or n is odd d = 4 then there exist 

exactly �88 different homotopy types of finite CW-H-spaces among 

the total spaces of principal G ( n - l , d )  bundles over S d"-x . There are at least 

that number if d = 4, n-even. 

One should note that Theorem A, part (b) is a direct consequence of  the clas- 

sical theorems of  Feldbau and Steenrod ([5, theorems 18.5, p. 99 and 19.3, p. 

101]). 

The relation of  Theorem A to the non-cancellation phenomena can be expressed 

by the following: 

THEOREM B. I f  2 -- +_ 2 'modk(n ,d ) ,  2-odd, then 

M(n, d, 2) x S d~- 1 ~ M(n, d, 2') x S ~"- 1. 

1. The homotopy equivalenees of SU 

The following facts concerning the homotopy groups of  SU, SU(n), and 

Sp(n) are classical theorems of  Bott  [1]. 

THEOREM 1. 1. (Bott [1, p. 314-315]) 

(a) ~2k+l(SV) = Z ,  k > 1 

rc2r,(SU) = 0 
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(b) 7~4k+3(Sp) = Z,  ~8k+4(Sp) -~ ~8k+s(Sp) ----- Z 2 

lr4k+2(Sp) = ~rsk+l(Sp) =~rsk+2(Sp) = 0 

(c) ~rk(SV(n)) = rCk(SU) if k < 2n 

zr2.(SV(n)) = Z.z 

(d) There exists a fibration of infinite loop spaces and maps 

Sp st: 8BSp 

where BBSp is the classifying space of the classifying space of Sp. As a con- 

sequence one can obtain: 

COROLLARY 1.2. (a) The degree of the Hurewicz-Serre homomorphism 

Z = Tc2,k_I(SU ) = Ir2k_l/torsion ~ PH2k_I(SU, Z ) = PH2k_l(SU, Z)/torsion is 

(b) The degree of 7r4,,_l(~b): n4,,_l(Sp) ~Tr4,_l(SU ) is 1 for n odd and 2for n 

even. The degree of ~z4n+l(~): rc4,+I(SU ) ~ 7c4n+I(BBSp) is 1 for n even and 

2 for n odd, n > 1 .  

(c) rc4~ + 2(Sp(n)) is cyclic of order (2n + 1) ! if n is even and of order 2[(2n + 1) !] 

if n is odd. 

(d) The degree of the Hurewicz-Serre homomorphism Z.=zr4n_l(Sp)/tor- 

sion ~ PHg~_l(Sp)/torsion=Z is ( 2 n - l ) !  if n is odd and 2[(2n-1)!]  if n is 

e v e n .  

For a CWcomplex Ylet r,: Y ~ Yn be its Postnikov approximation in dimen- 

sion < n, i.e.: rck(r,) is an isomorphism if k < n and nk(Y,) = 0 if k > n.  

LEMMA 1.3. Let Y be a CW complex. I f  H*(Y,Q) is a free (associative 

commutative graded)) algebra then 

(a) r*:H*(Y~,Q)~H*(Y,Q) is a monomorphism, imr* being the sub- 

algebra of H*(Y,Q) generated by F-,k<=,Hk(y,Q). 

(b) The k-invariants of Y are of finite order. 

PROOF. (a) Let A c H*(Y,Z) be a free graded subgroup so that  the compo- 

sition A | Q ~ H*(Y,Z) |  ~ H*(Y,Q) ~ QH*(Y,Q) is an isomorphism (where 

QH*(Y,Q) is the module of indecomposables of H*(Y,Q)). Then there exists a 

map ~: Y ~ K(A) = 1-[ ,K(A c~ H"(Y,Z), n) realizing A and therefore yielding an 

isomorphism of rational cohomology. Hence, rt(t~) | Q: zt(Y) | Q ~ rc(K(A))| O 

and consequently lr(~,) | Q: zr(Y,) | Q ~ 7r(K(A(")))| Q where K(A("))= 

]~ ,~<__~K(A n H"(Y, Z), m) and ~,,: Y,, ~ K(A ~ )  = [K(A)], is the Postnikov ap- 



318 A. ZABRODSKY Israel J. Math., 

proximation of ~.  Thus, ~. induces an isomorphism of rational cohomology 

and as im [H* (K(A(")), Q) -~ H* (K(A), O)] represents the subalgebra 

generated by ~ m<~H"(K(A),Q) '~ (a) follows. 

(b) By (a) H*(Y.,Q) ~ H*(Y,Q) is a monomorphism and, consequently, so is 
rn n 1 "/On 1 H*(r,,.-1,Q): H*(Y.-x,Q) ~ H*(Y.,Q) where Y. ' :4 Y._, _z_r KOz.(y), n + 1) 

is the Postnikov fibration. As im H*(k._ 1, Q) c ker H*(r. ._ 1Q) = O, H*(k._ 1, Q) 

= 0, and im(H*(k._ 2, Z)), (i.e., the integral k-invariants) are of finite order and 

(b) follows. 

Throughout this section we shall consider the following properties of a pair 

of CW complexes X and Y: 

(a) H*(X,Z) and rc.(Y) are torsion free and H*(Y, Q) is a free algebra. 

(b) Yis a homotopy associative H-space. 

(c) H*(X, Z) is a free algebra. 

(d) rank QH"(X, Z) < i for all m > 0. 

LEMMA 1.4. I f  (a) is satisfied then 

,..: EX, Y] -. IX, YJ 

is onto. 

PROOF. By (a) and 1.3 all k-invariants of Yare integral and of finite order. As 

H*(X, Z) has no (non-zero) elements of finite order every map X ~ Y, can be 

lifted (up to homotopy) to a map X -~ Y. 

LEMMA 1.5. I f  (a) is satisfied and dp: X'  ~ X yields an epimorphism of 

integral cohomology then dp*: [X, Y] -~ [X', Y] is onto. 

PROOF. Given f :  X'  ~ Y and suppose, inductively, the following (homotopy) 

commutative diagram: 

f te 
X' �9 Y .-m 

fm-I 
X 

Fig. 1 

K(~'m(Y),m } 

Ym 

] grrl,m -1 

Ym-1 
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(As Yo is a point such a diagram exists for m = 1 .) 

By 1.4 fro-1 can be lifted to :r I'm, rm,m-lOfm = f m - l "  AS 

r,.,.,_ 1 o fmo ~b ~ rm.m- 10 rm O f and as rm,m- 1 can be considered as a principal 

fibration [X',  K(nm(u m)] acts on IX',  I'm] and one gets: [rm o f ]  = [w]'[f~o ~b] 

for some w: X ' ~  KQrm(Y),m ). The fact that H*(c~,Z) is onto is equivalent 

to the extendability of  w to X: w ~ ~ o  r for some ~: X --* K(rCm(Y),m) 

Let If, .] = [w]'Efm], f m : X o  Ym" Then [rm.m- 1 O/m ] = rm,m-l*[f,.] = 

r,.,z-1 .[w]" [f,.] = Jr,.,,.-1 o f . , ] .  Hence, r,.,,.-1 o f,. ~ f , ._l  and also 

[ j ~ o  ~b] = ~b*Ef,.] = q~*[~ " /m]=[~O ~b]'Ef..o 43 = [w] El,.~ ~b] = [ r , . o f ]  

and one obtains the following homotopy commutative diagram: 

X' f rm +~1 
-~ '( 'Ym+I 

~ r m ~  ~ rm+l, m 
r= 

X ~ Ym 
Fig. 2 

Thus, f = lira J:. satisfies f o  q~ ~ f and r is onto. 

P R O P O S I T I O N  1.6. I f  (a), (b), and (c) are satisfied, then 

[X  A X, Y] - ~  s IX, Y] s Hom(n(X), n(Y)) 

is exact, where A: X --* X A X is the composition X A X x X A X A X (A- -  

the diagonal, A - - t h e  identification map). 

In order to prove 1.6 we first prove the following: 

LEMMA 1.6.1. Let f:  7"1 ~ 7"2,7"2 m - 1  connected, 7rm(T2) free and H*(T1,Z ) 

is a free algebra in dim < m. I f  lr,,(f) = 0 then imH"(f ,Z)  lies in the sub- 

module of decomposable elements of the algebra H*(Ti,Z). 

PROOF. One may assume that  rCk(Ti) = 0 for k > m, i = 1, 2; otherwise T~ 

and f can be replaced by their Postnikov approximations without affecting the 

homotopy and cohomology in dim < m. Hence, 7"2 = KQr,,(T2), m) and one 

has j :  K(rcm(T1),m) ~ T I yielding an isomorphism Xm(j). r4 , ( f )=0 is equiv- 

alent to the fact that the following composition is null homotopic: 

KQrm(T,), m) j 7"1 f 7"2 = K(x,.(r2),m). 
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By 1.3 ~Oo: T1 ~ II,"=1 K((rCk(T1)/torsion),k)= Ko yields an isomorphism 

of  rational cohomology. In particular, 

QHm(j,Q): QHm(Tx,Q) ~ QHm(K(r~m(T1),m),O) 

and kerHm(j,Q) lies in the submodule of  decomposables of  H*(T1,Q). Hence, 

imHm(f,Q) c kerHm(j,Q)lies in the module of decomposable and the free- 

ness of  the algbera H*(T1, Z) in dim = m implies that QHm(T1, Z ) o  QHm(T,1Q) 

is a monomorphism and imHm(f,Z) lies in the module ofdecomposables of  

am(T1, Z). 

PROOF OF 1.6. As f~A ~ *, re(A) = n(A) = 0 and rco A* = 0. Suppose 

f~ker~z.  Let ira: ym ~ Ybe the m - 1  connective fibering of  Y. Suppose induc- 

tively that there existsf~: X ~ ym SO that [ f ]  - [ira o fro] ~ im z~*. As st(ira/~*) = 0 

and re(ira) is a monomorphism, n( f )  = 0 implies tiffin) = 0. Let r: Y'~ ~ K(rCm(Y),m) 

be the Postnikov approximation of  ym. By 1.6.1 imH*(f~,Z)  lies in the module 

of  decomposables and hence r o f~ can be factored as demonstrated in the fol- 

lowing (homotopy) commutative diagram: 

fm 
X ~ Ym 

Wm 
XAX - K('n'm(Y), m 

Fig. 3 

As H*(X A X, Z) , rc.(Y") are torsion free and H*(Y~,Q) ~ H*(Y,Q)/im H*(rm, Q) 

is by 1.3 a free algebra, by 1.4 Wm can be lifted to ~,,: X A X --* ym, r o ~,, ~ Win. 

Put [ f , + 1 ]  = [f~] - [~ , ,o  z~], then [rO fm+l ] = [ro f,,] - [r~ ~ o  2] 

= [ro fz]  - [w,, o A] = 0. Hence,fro + 1 : X --, Y" can be lifted to f,,+ t: X --* Y"+ 1, 

[imO fm ] -- [ira+tO fro+l] = [imO fm ] -- [imo fm+l ] = [imO Wm 0 A]~imz~* 

and consequently [ f ] -  [ im+lOfm+t]eimA*.  Passing to a limit, one gets 

[ f ]  e im A*. 

PROPOSITION 1.7. Suppose (a), (b), and (c) hold. Let f :  X --* Y, rein(f) = 0 

for  m < k.  Then 
h* 

rCk(f) eimEHom(Hk(X),rCk(Y)) ~, Hom(rck(X), tog(Y))] where h* is induced 

by the Hurewicz homomorphism hk: rrk(X ) --* Hk(X ) = Hk(X,Z).  

PROOF. Let rk_I:Y--*Yk_ 1 be the Postnikov approximation. Then 

7r(rk_ 1 o f )  = 0  and by 1.6 r k o f ~  w o A  for some w : X A X - ~  Yk-1. By 
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1.4 w can be lifted to i7: X /~  X ~ Y and replacing [ f ]  by [ f ] -  [ # o  A] if 

necessary (rcm([f ] - [ ~ o  ,~ ] )=  rCm([f])) we may assume that rk-1 o f  ~ *; 

hence, f can be lifted to f :  X ~ yk ,  f ~ ik 0 f (ik: yk ~ y the k -  1 connective 

fibering). The proof  is completed by observing the following diagram: 

Trk(f ) 
I1 lTk(X) 

Trk(Yk ) 

H k (X) 

Hk(Y k) 

~ k ( f )  = ~rk(ik)(hk(k))-lOHk (}-) oh k 

Fig. 4 

Trk(Y) 

C im h k . 

If X satisfies (c) by a theorem of Serre the Hurewicz homomorphism induces a 

monomorphism ~k:~k(X)/ torsion ~ PHk(X)/ tors ion (which is an isomorphism 

after tensoring with Q).  If  (d) is satisfied as well as (a), (b), and (c) one can talk 

about the degree of  the Hurewicz-Serre homomorphism hk. 

As an immediate consequence of  1.7 one gets 

COROLLARY 1.8. Suppose (a), (b), (c), and (d) are satisfied. I f  f :  X -~ Y satisfies 

rrm(f) = O fo r  m < k then 7rk(f)x is divisible by deg ~k where x is either a genera- 

tor o f  ~zg(X)/torsion -- Z or x = 0 if  ~k(X)/torsion ---- 0. 

We shall apply these propositions to SU2,_  1 (the Postnikov approximation 

of  S U ) ,  n < o0: 

PROPOSmON. 1.9. Let  n > 3. I f  f : S U 2 , _  1 ~ SU2,_~ is a homotopy equiv- 

deg 7r2,_ 1 alence, 7~k(f) ---- 1, k < 2 n - 1  then rr2,_l(f) = 1. 

PROOF. Let [g] = [ f ] - l .  Then rCk(g ) = 0, k < 2 n - 1  and by 1.8 

(9) - 0 rood deg h2,- 1. 

By 1.2 deg/~2,_l = ( n - 1 ) !  > 2 (if n > 3). As f is a homotopy equivalence 

1 degn2,_l( f ) l  = 1 and, hence, I degrc2,_a(g)l __< 2. Consequently, degn2,_,(g 

=- 0, degn2 ._ l ( f )  = 1. 

As every homotopy equivalence SUm ~ SU,.  induces a homotopy equivalence 

SUk --* SUk ,  k < m ,  one gets: 
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COROLLARY 1.10. I f  f : S U m , - - ~ S U  m is a homotopy equivalence, degrc3(f) 

= deg~5(f) = 1 then Zrk(f) = 1 for all k .  

PROOF. By induction, if /172k_ 1 ( f )  = 1, 3 < k < n, applying 1.9 to jr,: 

SU2,-1 ~ SU2,-1 induced by f, degrc2,_a(f, ) = degzcz,_l(f) -- 1. 

LEMMA 1.11. Let z(n): SU(n)-~ SU(n) be the map induced by complex 

conjugation. Let Z: SU ~ SU be its limit. Then degz~zn_t(Z) = ( - 1 )  ~. 

PROOF. Three exists a commutative diagram 

%(n) 
SU(n) ~ SU(n) 

~f ~f 

s2n-1 h_.~s2n-1 
Fig. 5 

where f : S U ( n ) ~ S 2 " - I  is the classical fibration and degh = ( - 1 ) " .  

deg re2._ l ( f )  # 0 hence deg re2._ l(h). deg re2, ,_ l ( f )  = deg rC2n_ l ( f ) .  deg re2,_ l(Z(n)) 

implies deg r~z,_t(z)=deg re2,_ t (~((n)) = degrc2~_l(h) = ( -  1) ". 

Note that Z (and hence its Postnikov approximation z .:SU2.-1 ~ SU2.-Ois  

an oo loop map (and obviously a homotopy equivalence). 

Tt-IEOREM 1.12. f : SUz ,_  1 ~ SU2._ 1 is a homotopy equivalence if and only 

!f [ 'f] = [g] + A*w where g is one of the four maps 4-1, + Z,, and 

w~[SU2n_l A SU2n-I,SUEn-1]. 

PROOF. Clearly all maps f satisfying [ f ]  = [9] + A*w are homotopy equiv- 

alences. 

I f f  is a homotopy equivalence, then 9 can be chosen among _+ 1, _+ Z, so that 

Zrk(gOf)= 1 for k < 5 .  By 1.10 ZCk(gof)= 1 for all k and by 1.6 

[9 o f ]  - [1] eim/~*. As n(9 o 9 o f )  = 7z(f), I f ]  - [912[f]  e i m s  (by 1.6) 

and as imA* is a left ideal [O] [9 o f ]  - [g] [1] ~imA*, hence 

[ f ]  - [ g ] 2 [ f ]  + [O]2[f] - [g] = [ f ]  - [ g ]  ~imA*.  

REMARK 1.13. It could be easily seen that all homotopy equivalences of  
SU2,-~ which a re / / -maps  are homotopic to one of _ 1, _+ Z,,. 

COROLLARY 1.14. Every homotopy equivalence jr,: SU2,_ ~ ~ SU2,-1 can be 

covered by a homotopy equivalence fro: SU2m-1 ~ SU2m-1, m > n. 

PROOF. _+ I and _+ Z. can be covered. If  w.: SU2.-~ A SU2._~ ~ SU2._I 

then Wn(r2ra_l,2n_ 1 A r2m-l,2n--1): SU2m-1 A SU2m-I -'~ SU2n-1 
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( r 2 r n _ l , 2 n _  1 " SU2m_ 1 -'8" SU2n_I) can be lifted (by 1.4) to Wm:SU2m-1 A S U 2 m - 1  

SU2m-1. 

THEOREM 1.15. I f  f:Sp4,,-1 ~Sp4~-1  is a homotopy equivalence then 

degn4,,_l(f) = degn3(f)  for all k > 1. 

PROOF. Consider (9m: Sp4m-1-~ SU4~-1 induced by the Bott map (9. Let 

f:  Sp4m-1 ~ Sp4,~-1 be a homotopy equivalence and suppose deg n4k_ l( f )  = 1, 

1 < k < n.  Then degn4k_l((9of)  = degn4k_l((9), k < n. It follows from 1.8 

that  degrc4,_ 1((9 o f )  - deg n4,_ 1((9) mod deg h4,- 1. As n > 1, by 1.2(d), 

deg~4,_ 1 > 6. But as f is a homotopy equivalence I degn4,_l(f)l = 1 ,  hence 

deg re4,_ 1((9 o f )  - deg n4,- 1((9) < 2 deg n4,- 1((9) < 4. 

It follows that  degn4,_l((9of)=degn4,_l((9) and as degn4 ,_ l ( (9 )~0  

degn4,- l( f)  = 1. This proves that if degna(f)  = 1 then deg=4k-l(f)  = 1 for 

all k. If  n3(f) = - 1  replace [ f ]  by - [ f ] .  

2. Proof of Thearem A 

PROPOSITION 2.1. Let G, d, q~d,-2 : G ~ SUd,,-2 be either SU2n_2,2, identity or 

Sp4._2,4,(94n_2:Sp4n_2--+SU4,_ 2 induced by (9. (In general, we write 

= (gk: Spg -~ SUk for the map inducedby (9: Sp ~ SU.) I f  f ,  g: G ~ G are 

homotopy equivalences then there exists a homotopy equivalence h: SUdn_  2 ..~ 

SUd,_ 2 so that ho ~d,-2o f "~ ~ , - 2 0  g. 

PROOF. If  d = 2 and h 1 is the (homotopy) inverse of f take h -- g o h I .  

I f  d = 4, in view of 1.15, by taking [hi] = + 1 ~ [SU4,-2, SU4,-2] one may 

assume n(q~of) = n(h lo  ~ o g ) .  By 1.6 [ q ~ o f ] - [ h  l o  q~o g] =A*[w] ,  

w: G/% G~SUd,,-2 As ~/~  q~ (and consequently q~ o g /k  q~og) induce an epimo- 

morphism of  integral cohomology by 1.5 w~  ~ o (q~g A q~g), ~: SU4,-2/% SUg,-z 

--~ SU4a_ 2 . Hence, wo A,~ ~ o  Ao q~o g.  Put [h] = [hi] + A*[~] and then 

[ ~ o f ] - [ h o  q~og] = [ ~ o f ] - [ h l o  ~ o g ] - [ ~ o s  ~ o g ]  = 0 a n d  2.1 

follows. 

As the fiber of ~z: M (n, d, ).) -~ G (n, d) is n d - 2  connected r ().) : M (n, d,).) 

G, (G, d, ~ as in 2.1) is a Postnikov approximation. 

2.2. PROOF OF THEOREM A. Let a:M(n,d,2) -~ M(n,d,2') be a homotopy 

equivalence. Let f :  M(n, d, 2) -~ G(n, d) be the composition hz' o a.  Put g = ~ .  

As noted above r().): M(n, d,2) -~ Gd,-2 and r()/): M(n, d,),') ~ Gdn_ 2 are 

Postnikov approximations and so is r(2')o , .  Hence, one gets the following 

(homotopy) commutative diagram: 
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f(g) "~ 
M(n,d,k) ~, G(n,d) �9 SUdn_ 1 

7dn-2 1 Irdn-2 [ r'dn-2 

'{" (~g) ~dn-2 
Mdn-2 ..~ �9 Gdn_ 2 ~' SUdn_2 

Fig. 6 

j and ~ are homotopy equivalences. By 2.1 there exists h 'SUdn_ 2 ---+ SUdn_ 2 

so that ho ~ a . _ 2 o f ~  q]d._2 0 g" By 1.14 there exists ~: SUn.-1 ~ S U d . _  1 

with r'a._ 2 0 h ~ h o r'dn_ 2 . Hence, t"dn_ 2 0 l~ 0 ~)0 9 ~' r'dn-2 0 ~ 0 f and 

[ h o q] o 9] - [q~ o f ]  ~ imj .  : [M(n, d, 2), K(dn - 1, Z)] --* [M(n, d, 2), SUd._I ] 

where j :  K ( d n - l , Z )  --* SUd,,_ 1 is the fiber of  r'dn_ 2. 

Let t, Wd.-1, kS.-1, Yd.-1 be generators of  the infinite cyclic groups 

QHd"-I(K(Z, dn-1) ,Z) ,  QHd"-I(SUd.-1,Z), QH~"-I(G(n,d),Z) and 

QH d"- l(M(n, d, 2), Z) respectively then: 

Qj*wd,,-1 = (dn/2-1)! t ,  

Q~k*w,.-1 = wd. -1 ,  Q~:wd , , -1  = 2v~.-1 

Qh*wa . -1  = -+ w . . - 1 ,  g ( h z .  o ~)*w~.-1 = _+ ~'v~._l  �9 

As [ h o  q~ o g] - [q~ o f ]  e i m j . ,  

Q(9 * ~ * h*)wa.- 1 - Q(f*~*)wa.- 1 rood (dn/2-1)  ! 

and substituting the corresponding values 2va.-1 > 4- 2'vd.-i rood (dn/2-1)! 

and Z - _ 2 ' rood(t in/2-1)  !, 

3. Proof of Theorem B 

Put M(2)=M(n,d,2), lc=k(n, el), G=G(n,d). If 2 =  + 2 ' m o d k  then 

(2, k) = (2', k). As 2/(2, k) and k/(2, k) are relatively prime there exist a, b 6 Z 

so that 

(1) a()./(2, k)) + b(k/(2, k)) = 1 

(2) (a, k/(2, k)) = 1 

By (1) (a2'/(2, k))2 = 2 'rood k. Put m = a2'/(2,k). Hence, there exists a com- 
mutative diagram 

-hx M(~) -hm M(X1 ,~ G 

17 l l 
sdnq h m  sdn-1 hx~  sdn-! 

Fig. 7 
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Now, hk:S d " - l - ~ S a " - I  can be lifted to 7~:S e n - l ~ G  and therefore 

hk/(;~k~: S gn-1 --> S an-1 can be lifted to X': S e"-a -o M(2). 

By (2) and since 2'/(2' ,  k) and k/(2' ,  k) are relatively prime (m,  k/(2' ,  k))  = 1 

and there exist integers e,/? so that  tim - e(k/(2',  k)) = fla2'/(2', k) - e k / ( 2 ' ,  k) = 1. 

As k is even, 2 '  o d d - k / ( 2 ' , k )  is even and m is odd, replacing e, fl by e + m, 

fl + k/(2' ,  k) if necessary one may assume that  e is even. 

Let m: S d"-i x S d ' - I  -~ S a"-~ be a map of  type (2,1). Define: 

g l :  M(2')  x S d"-I ~ M(2), g2: M(2')  x S d " - l ~  S d"-I 

by 

92 ---- /~M(1)(hrn • Z'), 02 = m(h~/2 o f •  lip) 

where PMr is the H-structure of  M(2) (which exists by [7]), h~/2, h,: S a"- a --~ sd , -  1 

maps of  degrees ~/2 and /~ respectively, f :  M(2')  ~ S d"- 1 ,~ M(2 ' ) /G the pro-  

jection. Let # :M(2 ' )  • S d"-I ~ M(2) x S d"-i  be induced by the 9i's. Now, if 

w~,w~,, and 1~ are the generators of  QHa~-I (M(2) ,Z)  "~ Z ,  QHa"-I(M()~' ) ,Z) ,  

and QH d"- l (Sa"-  ~,Z) respectively, then 

QHdn- l (g ,Z )wi  = rnw~, + (k/(2, k))l~, QHdn-I(9,  Z)I  s = ~W~, + fll~ 

and QHd"-a(9 ,Z  ) is an isomorphism. As Q H ' ( 9 , Z )  is an isomorphism for 

m < t i n - l ,  QH*(9, Z) is an isomorphism and as H * ( M ( 2 ) x  s d"- I , z )  and 

H*(M(2')  x s d " - I , Z )  are free (associative and commutative graded) algebras 

H*(9, Z) is an isomorphism and 9 is a homotopy  equivalence. 
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