ON THE HOMOTOPY TYPE OF PRINCIPAL CLASSICAL GROUP BUNDLES OVER SPHERES

BY

A. ZABRODSKY

ABSTRACT

The total spaces of principal SU(n-1) bundles over S^{2n-1} are classified. The classification of Sp (n-1) bundles over S^{4n-1} is studied as well. As an intermediate step the homotopy equivalences of SU and Sp are classified.

0. Introduction

In their study of the non-cancellation phenomenon of cartesian products Hilton and Roitberg [3] investigated the homotopy type of principal S^3 bundles over spheres. From the point of view of the theory of finite CW H-spaces the most interesting case was that of principal S^3 bundles over S^7 as the bundle classified by $7w \in \pi_6(S^3)$ turned out to be a newly discovered H-space whose homotopy type is different from that of Sp(2) and $S^3 \times S^7$ (the only previously known H-spaces of type 3, 7).

Since then, other finite CW-H-spaces which are principal classical group bundles over spheres were discovered: [2], [4], and [7]. Combining the results of [6] and [7] one has:

THEOREM 0.1. Let G(n,d),d be one of the following: SO(n),1, SU(n),2, or Sp(n),4. Let $\alpha = (G(n-1,d) \rightarrow G(n,d) \xrightarrow{f} S^{dn-1})$ be the classical fiber bundle (dn-1-odd). Denote by $M(n,d,\lambda)$ the total space of the fiber bundle $h_{\lambda}^{*}(\alpha)$ induced by a map $h_{\lambda}: S^{dn-1} \rightarrow S^{dn-1}$ of degree λ . Then:

- (a) If λ is odd then $M(n, d, \lambda)$ is an H-space.
- (b) If $nd-1 \neq 3,7$ and $M(n,d,\lambda)$ admits an H-structure then λ is odd.

Received November 11, 1971

From the point of view of the classification problem of finite CW-H-spaces one would like to know how many homotopy types do the $\{M(n, d, \lambda)\}$ represent. This question of course amounts to the very fundamental problem of classifying the total spaces of principal G(n-1, d) bundles over S^{dn-1} .

In this note we give a complete answer for that question in case d = 2 and a partial one for d = 4.

THEOREM A. (a) If d = 2 or 4 and $M(n, d, \lambda) \approx M(n, d, \lambda')$ then $\lambda \equiv \pm \lambda' \mod (dn/2 - 1)!$

(b) If $\lambda \equiv \pm \lambda' \mod k(n,d)$ then $M(n,d,\lambda) \approx M(n,d,\lambda')$ where k(n,d) is the order of the cyclic group $\pi_{dn-2}(G(n-1,d))$:

$$k(n,2) = (n-1)!$$

$$k(n,4) = \begin{cases} (2n-1)! & \text{if } n \text{ is odd} \\ 2[(2n-1)!] & \text{if } n \text{ is even} \end{cases}$$

Note that if d = 2 or *n* is odd (a) and (b) give a necessary and sufficient condition for $M(n, d, \lambda) \approx M(n, d, \lambda')$.

COROLLARY. Suppose dn > 8. If d = 2 or n is odd d = 4 then there exist exactly $\frac{1}{4}(dn/2-1)!$ different homotopy types of finite CW-H-spaces among the total spaces of principal G(n-1,d) bundles over S^{dn-1} . There are at least that number if d = 4, n-even.

One should note that Theorem A, part (b) is a direct consequence of the classical theorems of Feldbau and Steenrod ([5, theorems 18.5, p. 99 and 19.3, p. 101]).

The relation of Theorem A to the non-cancellation phenomena can be expressed by the following:

THEOREM B. If $\lambda \equiv \pm \lambda' \mod k(n,d)$, λ -odd, then

 $M(n, d, \lambda) \times S^{dn-1} \approx M(n, d, \lambda') \times S^{dn-1}.$

1. The homotopy equivalences of SU

The following facts concerning the homotopy groups of SU, SU(n), and Sp(n) are classical theorems of Bott [1].

THEOREM 1. 1. (Bott [1, p. 314-315])
(a)
$$\pi_{2k+1}(SU) = Z$$
, $k \ge 1$
 $\pi_{2k}(SU) = 0$

Vol. 11, 1972

- (b) $\pi_{4k+3}(Sp) = Z$, $\pi_{8k+4}(Sp) = \pi_{8k+5}(Sp) = Z_2$ $\pi_{4k+2}(Sp) = \pi_{8k+1}(Sp) = \pi_{8k+2}(Sp) = 0$
- (c) $\pi_k(SU(n)) = \pi_k(SU)$ if k < 2n $\pi_{2n}(SU(n)) = Z_{n!}$

(d) There exists a fibration of infinite loop spaces and maps

$$Sp \xrightarrow{\phi} SU \xrightarrow{\psi} BBSp$$

where BBSp is the classifying space of the classifying space of Sp. As a consequence one can obtain:

COROLLARY 1.2. (a) The degree of the Hurewicz-Serre homomorphism

 $Z = \pi_{2k-1}(SU) = \pi_{2k-1}/torsion \to PH_{2k-1}(SU, Z) = PH_{2k-1}(SU, Z)/torsion is$ (k-1)!

(b) The degree of $\pi_{4n-1}(\phi)$: $\pi_{4n-1}(Sp) \to \pi_{4n-1}(SU)$ is 1 for *n* odd and 2 for *n* even. The degree of $\pi_{4n+1}(\psi)$: $\pi_{4n+1}(SU) \to \pi_{4n+1}(BBSp)$ is 1 for *n* even and 2 for *n* odd, n > 1.

(c) $\pi_{4n+2}(Sp(n))$ is cyclic of order (2n + 1)! if n is even and of order 2[(2n + 1)!] if n is odd.

(d) The degree of the Hurewicz-Serre homomorphism $Z = \pi_{4n-1}(Sp)/tor$ sion $\rightarrow PH_{4n-1}(Sp)/torsion = Z$ is (2n-1)! if n is odd and 2[(2n-1)!] if n is even.

For a CW complex Y let $r_n: Y \to Y_n$ be its Postnikov approximation in dimension $\leq n$, i.e.: $\pi_k(r_n)$ is an isomorphism if $k \leq n$ and $\pi_k(Y_n) = 0$ if k > n.

LEMMA 1.3. Let Y be a CW complex. If $H^*(Y,Q)$ is a free (associative commutative graded)) algebra then

(a) $r_n^*: H^*(Y_n, Q) \to H^*(Y, Q)$ is a monomorphism, $\operatorname{im} r_n^*$ being the subalgebra of $H^*(Y, Q)$ generated by $\sum_{k \leq n} H^k(Y, Q)$.

(b) The k-invariants of Y are of finite order.

PROOF. (a) Let $A \subset H^*(Y,Z)$ be a free graded subgroup so that the composition $A \otimes Q \to H^*(Y,Z) \otimes Q \to H^*(Y,Q) \to QH^*(Y,Q)$ is an isomorphism (where $QH^*(Y,Q)$ is the module of indecomposables of $H^*(Y,Q)$). Then there exists a map $\psi: Y \to K(A) = \prod_n K(A \cap H^n(Y,Z), n)$ realizing A and therefore yielding an isomorphism of rational cohomology. Hence, $\pi(\psi) \otimes Q: \pi(Y) \otimes Q \approx \pi(K(A)) \otimes Q$ and consequently $\pi(\psi_n) \otimes Q: \pi(Y_n) \otimes Q \approx \pi(K(A^{(n)})) \otimes Q$ where $K(A^{(n)}) = \prod_{m \leq n} K(A \cap H^m(Y,Z), m)$ and $\psi_n: Y_n \to K(A^{(n)}) = [K(A)]_n$ is the Postnikov ap-

proximation of ψ . Thus, ψ_n induces an isomorphism of rational cohomology and as im $[H^*(K(A^{(n)}), Q) \rightarrow H^*(K(A), Q)]$ represents the subalgebra generated by $\sum_{m \le n} H^n(K(A), Q)^m$ (a) follows.

(b) By (a) $H^*(Y_n, Q) \to H^*(Y, Q)$ is a monomorphism and, consequently, so is $H^*(r_{n,n-1}, Q): H^*(Y_{n-1}, Q) \to H^*(Y_n, Q)$ where $Y_n \xrightarrow{r_{n,n-1}} Y_{n-1} \xrightarrow{k_{n-1}} K(\pi_n(Y), n+1)$ is the Postnikov fibration. As im $H^*(k_{n-1}, Q) \subset \ker H^*(r_{n,n-1}Q) = 0$, $H^*(k_{n-1}, Q) = 0$, and im $(H^*(k_{n-1}, Z))$, (i.e., the integral k-invariants) are of finite order and (b) follows.

Throughout this section we shall consider the following properties of a pair of CW complexes X and Y:

- (a) $H^*(X, Z)$ and $\pi_*(Y)$ are torsion free and $H^*(Y, Q)$ is a free algebra.
- (b) Y is a homotopy associative H-space.
- (c) $H^*(X, Z)$ is a free algebra.
- (d) $\operatorname{rank} QH^m(X, Z) \leq 1$ for all $m \geq 0$.

LEMMA 1.4. If (a) is satisfied then

$$r_n \colon [X, Y] \to [X, Y_n]$$

is onto.

PROOF. By (a) and 1.3 all k-invariants of Y are integral and of finite order. As $H^*(X, Z)$ has no (non-zero) elements of finite order every map $X \to Y_n$ can be lifted (up to homotopy) to a map $X \to Y$.

LEMMA 1.5. If (a) is satisfied and $\phi: X' \to X$ yields an epimorphism of integral cohomology then $\phi^*: [X, Y] \to [X', Y]$ is onto.

PROOF. Given $f: X' \to Y$ and suppose, inductively, the following (homotopy) commutative diagram:

Fig. 1

(As Y_0 is a point such a diagram exists for m = 1.)

By 1.4 \tilde{f}_{m-1} can be lifted to $\tilde{f}_m: X \to Y_m$, $r_{m,m-1} \circ \tilde{f}_m = \tilde{f}_{m-1}$. As $r_{m,m-1} \circ \tilde{f}_m \circ \phi \approx r_{m,m-1} \circ r_m \circ f$ and as $r_{m,m-1}$ can be considered as a principal fibration $[X', K(\pi_m(Y), m)]$ acts on $[X', Y_m]$ and one gets: $[r_m \circ f] = [w] \cdot [\tilde{f}_m \circ \phi]$ for some $w: X' \to K(\pi_m(Y), m)$. The fact that $H^*(\phi, Z)$ is onto is equivalent to the extendability of w to $X: w \approx \overline{w} \circ \phi$ for some $\overline{w}: X \to K(\pi_m(Y), m)$. Let $[\tilde{f}_m] = [\overline{w}] \cdot [\tilde{f}_m]$, $\tilde{f}_m: X \to Y_m$. Then $[r_{m,m-1} \circ \tilde{f}_m] = r_{m,m-1} \cdot [\tilde{f}_m] = r_{m,m-1} \cdot [\tilde{f}_m] = [r_{m,m-1} \circ \tilde{f}_m]$. Hence, $r_{m,m-1} \circ f_m \approx f_{m-1}$ and also $[\tilde{f}_m \circ \phi] = \phi^*[\tilde{f}_m] = \phi^*[\overline{w} \cdot \tilde{f}_m] = [\overline{w} \circ \phi] \cdot [\tilde{f}_m \circ \phi] = [w] [\tilde{f}_m \circ \phi] = [r_m \circ f]$

and one obtains the following homotopy commutative diagram:

Thus, $f = \lim f_m$ satisfies $f \circ \phi \approx f$ and ϕ^* is onto.

PROPOSITION 1.6. If (a), (b), and (c) are satisfied, then

$$[X \land X, Y] \xrightarrow{\Delta^*} [X, Y] \xrightarrow{\pi} \operatorname{Hom}(\pi(X), \pi(Y))$$

is exact, where $\overline{\Delta}: X \to X \wedge X$ is the composition $X \xrightarrow{\Delta} X \times X \xrightarrow{\Lambda} X \wedge X$ (Δ —the diagonal, Λ —the identification map).

In order to prove 1.6 we first prove the following:

LEMMA 1.6.1. Let $f: T_1 \to T_2$, $T_2 \ m-1$ connected, $\pi_m(T_2)$ free and $H^*(T_1, Z)$ is a free algebra in dim $\leq m$. If $\pi_m(f) = 0$ then im $H^m(f, Z)$ lies in the submodule of decomposable elements of the algebra $H^*(T_1, Z)$.

PROOF. One may assume that $\pi_k(T_i) = 0$ for k > m, i = 1,2; otherwise T_i and f can be replaced by their Postnikov approximations without affecting the homotopy and cohomology in dim $\leq m$. Hence, $T_2 = K(\pi_m(T_2), m)$ and one has $j: K(\pi_m(T_1), m) \to T_1$ yielding an isomorphism $\pi_m(j)$. $\pi_m(f) = 0$ is equivalent to the fact that the following composition is null homotopic:

$$K(\pi_m(T_1),m) \xrightarrow{j} T_1 \xrightarrow{j} T_2 = K(\pi_m(T_2),m)$$

By 1.3 $\psi_0: T_1 \to \prod_{k=1}^m K((\pi_k(T_1)/\text{torsion}), k) = K_0$ yields an isomorphism of rational cohomology. In particular,

$$QH^{m}(j,\boldsymbol{Q})\colon QH^{m}(T_{1},\boldsymbol{Q}) \xrightarrow{\approx} QH^{m}(K(\pi_{m}(T_{1}),m),\boldsymbol{Q})$$

and ker $H^m(j, Q)$ lies in the submodule of decomposables of $H^*(T_1, Q)$. Hence, im $H^m(f, Q) \subset \ker H^m(j, Q)$ lies in the module of decomposable and the freeness of the algbera $H^*(T_1, Z)$ in dim $\leq m$ implies that $QH^m(T_1, Z) \rightarrow QH^m(T_{,1}Q)$ is a monomorphism and im $H^m(f, Z)$ lies in the module of decomposables of $H^m(T_1, Z)$.

PROOF OF 1.6. As $\Omega \Lambda \approx *$, $\pi(\Lambda) = \pi(\overline{\Delta}) = 0$ and $\pi \circ \overline{\Delta}^* = 0$. Suppose $f \in \ker \pi$. Let $i_m \colon Y^m \to Y$ be the m-1 connective fibering of Y. Suppose inductively that there exists $f_m \colon X \to Y^m$ so that $[f] - [i_m \circ f_m] \in \operatorname{im} \overline{\Delta}^* \cdot \operatorname{As} \pi(\operatorname{im} \overline{\Delta}^*) = 0$ and $\pi(i_m)$ is a monomorphism, $\pi(f) = 0$ implies $\pi(f_m) = 0$. Let $r \colon Y^m \to K(\pi_m(Y), m)$ be the Postnikov approximation of Y^m . By 1.6.1 im $H^*(f_m, Z)$ lies in the module of decomposables and hence $r \circ f_m$ can be factored as demonstrated in the following (homotopy) commutative diagram:

$$\begin{array}{ccc} X & \stackrel{f_{m}}{\longrightarrow} & Y_{m} \\ \overline{\Delta} & & \downarrow r \\ X \wedge X & \stackrel{W_{m}}{\longrightarrow} & K(\pi_{m}(Y), m \\ & & Fig. 3 \end{array}$$

As $H^*(X \wedge X, Z)$, $\pi_*(Y^m)$ are torsion free and $H^*(Y^m, Q) \approx H^*(Y, Q)/\text{im } H^*(r_m, Q)$ is by 1.3 a free algebra, by 1.4 w_m can be lifted to $\overline{w}_m : X \wedge X \to Y^m$, $r \circ \overline{w}_m \approx w_m$.

Put $[\tilde{f}_{m+1}] = [f_m] - [\bar{w}_m \circ \bar{\Delta}]$, then $[r \circ \tilde{f}_{m+1}] = [r \circ f_m] - [r \circ \bar{w}_m \circ \bar{\Delta}]$ = $[r \circ f_m] - [w_m \circ \bar{\Delta}] = 0$. Hence, $\tilde{f}_{m+1}: X \to Y^m$ can be lifted to $f_{m+1}: X \to Y^{m+1}$, $[i_m \circ f_m] - [i_{m+1} \circ f_{m+1}] = [i_m \circ f_m] - [i_m \circ \tilde{f}_{m+1}] = [i_m \circ \bar{w}_m \circ \bar{\Delta}] \in \operatorname{im} \bar{\Delta}^*$ and consequently $[f] - [i_{m+1} \circ f_{m+1}] \in \operatorname{im} \bar{\Delta}^*$. Passing to a limit, one gets $[f] \in \operatorname{im} \bar{\Delta}^*$.

PROPOSITION 1.7. Suppose (a), (b), and (c) hold. Let $f: X \to Y$, $\pi_m(f) = 0$ for m < k. Then $\pi_k(f) \in \operatorname{im}[\operatorname{Hom}(H_k(X), \pi_k(Y)) \xrightarrow{h_k^*} \operatorname{Hom}(\pi_k(X), \pi_k(Y))]$ where h_k^* is induced by the Hurewicz homomorphism $h_k: \pi_k(X) \to H_k(X) = H_k(X, Z)$.

PROOF. Let $r_{k-1}: Y \to Y_{k-1}$ be the Postnikov approximation. Then $\pi(r_{k-1} \circ f) = 0$ and by 1.6 $r_k \circ f \approx w \circ \overline{\Delta}$ for some $w: X \wedge X \to Y_{k-1}$. By

1.4 w can be lifted to $\overline{w}: X \wedge X \to Y$ and replacing [f] by $[f] - [\overline{w} \circ \overline{\Delta}]$ if necessary $(\pi_m([f] - [\overline{w} \circ \overline{\Delta}]) = \pi_m([f]))$ we may assume that $r_{k-1} \circ f \approx *$; hence, f can be lifted to $\overline{f}: X \to Y^k$, $f \approx i_k \circ f$ ($i_k: Y^k \to Y$ the k-1 connective fibering). The proof is completed by observing the following diagram:

If X satisfies (c) by a theorem of Serre the Hurewicz homomorphism induces a monomorphism $\tilde{h}_k: \pi_k(X)/\text{torsion} \to PH_k(X)/\text{torsion}$ (which is an isomorphism after tensoring with Q). If (d) is satisfied as well as (a), (b), and (c) one can talk about the degree of the Hurewicz-Serre homomorphism \tilde{h}_k .

As an immediate consequence of 1.7 one gets

COROLLARY 1.8. Suppose (a), (b), (c), and (d) are satisfied. If $f: X \to Y$ satisfies $\pi_m(f) = 0$ for m < k then $\pi_k(f)x$ is divisible by deg \tilde{h}_k where x is either a generator of $\pi_k(X)/torsion = Z$ or x = 0 if $\pi_k(X)/torsion = 0$.

We shall apply these propositions to SU_{2n-1} (the Postnikov approximation of SU), $n \leq \infty$:

PROPOSITION. 1.9. Let n > 3. If $f: SU_{2n-1} \to SU_{2n-1}$ is a homotopy equivdeg π_{2n-1} alence, $\pi_k(f) = 1$, k < 2n-1 then $\pi_{2n-1}(f) = 1$.

PROOF. Let [g] = [f] - 1. Then $\pi_k(g) = 0$, k < 2n - 1 and by 1.8 $(g) \equiv 0 \mod \deg \tilde{h}_{2n-1}$.

By 1.2 deg $\tilde{h}_{2n-1} = (n-1)! > 2$ (if n > 3). As f is a homotopy equivalence $| \deg \pi_{2n-1}(f) | = 1$ and, hence, $| \deg \pi_{2n-1}(g) | \leq 2$. Consequently, $\deg \pi_{2n-1}(g) = 0$, $\deg \pi_{2n-1}(f) = 1$.

As every homotopy equivalence $SU_m \to SU_m$ induces a homotopy equivalence $SU_k \to SU_k$, $k \leq m$, one gets:

COROLLARY 1.10. If $f: SU_m \to SU_m$ is a homotopy equivalence, $\deg \pi_3(f) = \deg \pi_5(f) = 1$ then $\pi_k(f) = 1$ for all k.

PROOF. By induction, if $\pi_{2k-1}(f) = 1$, $3 \le k < n$, applying 1.9 to f_n : $SU_{2n-1} \to SU_{2n-1}$ induced by f, $\deg \pi_{2n-1}(f_n) = \deg \pi_{2n-1}(f) = 1$.

LEMMA 1.11. Let $\chi(n): SU(n) \to SU(n)$ be the map induced by complex conjugation. Let $\chi: SU \to SU$ be its limit. Then deg $\pi_{2n-1}(\chi) = (-1)^n$.

PROOF. Three exists a commutative diagram

$$SU(n) \xrightarrow{\chi(n)} SU(n)$$

$$\downarrow f \qquad \downarrow f$$

$$s^{2n-1} \xrightarrow{h} s^{2n-1}$$
Fig. 5

where $f: SU(n) \to S^{2n-1}$ is the classical fibration and $\deg h = (-1)^n$. $\deg \pi_{2n-1}(f) \neq 0$ hence $\deg \pi_{2n-1}(h)$. $\deg \pi_{2n-1}(f) = \deg \pi_{2n-1}(f)$. $\deg \pi_{2n-1}(\chi(n))$ implies $\deg \pi_{2n-1}(\chi) = \deg \pi_{2n-1}(\chi(n)) = \deg \pi_{2n-1}(h) = (-1)^n$.

Note that χ (and hence its Postnikov approximation $\chi_n: SU_{2n-1} \to SU_{2n-1}$) is an ∞ loop map (and obviously a homotopy equivalence).

THEOREM 1.12. $f: SU_{2n-1} \to SU_{2n-1}$ is a homotopy equivalence if and only if $[f] = [g] + \overline{\Delta}^* w$ where g is one of the four maps ± 1 , $\pm \chi_n$, and $w \in [SU_{2n-1} \land SU_{2n-1}, SU_{2n-1}].$

PROOF. Clearly all maps f satisfying $[f] = [g] + \overline{\Delta}^* w$ are homotopy equivalences.

If f is a homotopy equivalence, then g can be chosen among ± 1 , $\pm \chi_n$ so that $\pi_k(g \circ f) = 1$ for $k \leq 5$. By 1.10 $\pi_k(g \circ f) = 1$ for all k and by 1.6 $[g \circ f] - [1] \in \operatorname{im} \overline{\Delta^*}$. As $\pi(g \circ g \circ f) = \pi(f)$, $[f] - [g]^2[f] \in \operatorname{im} \overline{\Delta^*}$ (by 1.6) and as $\operatorname{im} \overline{\Delta^*}$ is a left ideal $[g][g \circ f] - [g][1] \in \operatorname{im} \overline{\Delta^*}$, hence

$$[f] - [g]^{2}[f] + [g]^{2}[f] - [g] = [f] - [g] \in \operatorname{im} \overline{\Delta^{*}}.$$

REMARK 1.13. It could be easily seen that all homotopy equivalences of SU_{2n-1} which are *H*-maps are homotopic to one of ± 1 , $\pm \chi_n$.

COROLLARY 1.14. Every homotopy equivalence $f_n: SU_{2n-1} \to SU_{2n-1}$ can be covered by a homotopy equivalence $f_m: SU_{2m-1} \to SU_{2m-1}$, m > n.

PROOF. ± 1 and $\pm \chi_n$ can be covered. If $w_n: SU_{2n-1} \wedge SU_{2n-1} \rightarrow SU_{2n-1}$ then $w_n(r_{2m-1,2n-1} \wedge r_{2m-1,2n-1}): SU_{2m-1} \wedge SU_{2m-1} \rightarrow SU_{2n-1}$ $(r_{2m-1,2n-1}: SU_{2m-1} \to SU_{2n-1})$ can be lifted (by 1.4) to $w_m: SU_{2m-1} \land SU_{2m-1}$ $\to SU_{2m-1}$.

THEOREM 1.15. If $f: Sp_{4m-1} \to Sp_{4m-1}$ is a homotopy equivalence then $\deg \pi_{4k-1}(f) = \deg \pi_3(f)$ for all $k \ge 1$.

PROOF. Consider $\phi_m: Sp_{4m-1} \to SU_{4m-1}$ induced by the Bott map ϕ . Let $f: Sp_{4m-1} \to Sp_{4m-1}$ be a homotopy equivalence and suppose $\deg \pi_{4k-1}(f) = 1$, $1 \leq k < n$. Then $\deg \pi_{4k-1}(\phi \circ f) = \deg \pi_{4k-1}(\phi)$, k < n. It follows from 1.8 that $\deg \pi_{4n-1}(\phi \circ f) \equiv \deg \pi_{4n-1}(\phi)$ mod $\deg \tilde{h}_{4n-1}$. As n > 1, by 1.2(d), $\deg \tilde{h}_{4n-1} \geq 6$. But as f is a homotopy equivalence $|\deg \pi_{4n-1}(f)| = 1$, hence

$$\operatorname{deg} \pi_{4n-1}(\phi \circ f) - \operatorname{deg} \pi_{4n-1}(\phi) \leq 2 \operatorname{deg} \pi_{4n-1}(\phi) \leq 4.$$

It follows that $\deg \pi_{4n-1}(\phi \circ f) = \deg \pi_{4n-1}(\phi)$ and as $\deg \pi_{4n-1}(\phi) \neq 0$ $\deg \pi_{4n-1}(f) = 1$. This proves that if $\deg \pi_3(f) = 1$ then $\deg \pi_{4k-1}(f) = 1$ for all k. If $\pi_3(f) = -1$ replace [f] by -[f].

2. Proof of Theorem A

PROPOSITION 2.1. Let G, d, $\tilde{\phi}_{dn-2}$: $G \to SU_{dn-2}$ be either SU_{2n-2} , 2, identity or Sp_{4n-2} , 4, ϕ_{4n-2} : $Sp_{4n-2} \to SU_{4n-2}$ induced by ϕ . (In general, we write $\tilde{\phi} = \phi_k$: $Sp_k \to SU_k$ for the map induced by ϕ : $Sp \to SU$.) If f, g: $G \to G$ are homotopy equivalences then there exists a homotopy equivalence h: $SU_{dn-2} \to SU_{dn-2}$ so that $h \circ \tilde{\phi}_{dn-2} \circ f \approx \tilde{\phi}_{dn-2} \circ g$.

PROOF. If d = 2 and h_1 is the (homotopy) inverse of f take $h = g \circ h_1$. If d = 4, in view of 1.15, by taking $[h_1] = \pm 1 \in [SU_{4n-2}, SU_{4n-2}]$ one may assume $\pi(\tilde{\phi} \circ f) = \pi(h_1 \circ \tilde{\phi} \circ g)$. By 1.6 $[\tilde{\phi} \circ f] - [h_1 \circ \tilde{\phi} \circ g] = \bar{\Delta}^*[w]$, $w: G \wedge G \to SU_{4n-2}$ As $\tilde{\phi} \wedge \tilde{\phi}$ (and consequently $\tilde{\phi} \circ g \wedge \tilde{\phi} \circ g$) induce an epimomorphism of integral cohomology by $1.5 w \approx \bar{w} \circ (\tilde{\phi}g \wedge \tilde{\phi}g)$, $\bar{w}: SU_{4n-2} \wedge SU_{4n-2}$ $\to SU_{4n-2}$. Hence, $w \circ \bar{\Delta} \approx \bar{w} \circ \bar{\Delta} \circ \tilde{\phi} \circ g$. Put $[h] = [h_1] + \bar{\Delta}^*[\bar{w}]$ and then $[\tilde{\phi} \circ f] - [h \circ \tilde{\phi} \circ g] = [\tilde{\phi} \circ f] - [h_1 \circ \tilde{\phi} \circ g] - [\bar{w} \circ \bar{\Delta} \circ \tilde{\phi} \circ g] = 0$ and 2.1 follows.

As the fiber of \tilde{h}_{λ} : $M(n,d,\lambda) \to G(n,d)$ is nd-2 connected $r(\lambda)$: $M(n,d,\lambda) \to G$, $(G,d,\tilde{\phi} \text{ as in } 2.1)$ is a Postnikov approximation.

2.2. PROOF OF THEOREM A. Let $\alpha: M(n, d, \lambda) \to M(n, d, \lambda')$ be a homotopy equivalence. Let $f: M(n, d, \lambda) \to G(n, d)$ be the composition $\tilde{h}_{\lambda'} \circ \alpha$. Put $g = \tilde{h}_{\lambda}$. As noted above $r(\lambda): M(n, d, \lambda) \to G_{dn-2}$ and $r(\lambda'): M(n, d, \lambda') \to G_{dn-2}$ are Postnikov approximations and so is $r(\lambda') \circ \alpha$. Hence, one gets the following (homotopy) commutative diagram:

j and \tilde{g} are homotopy equivalences. By 2.1 there exists $h: SU_{dn-2} \xrightarrow{\approx} SU_{dn-2}$ so that $h \circ \tilde{\phi}_{dn-2} \circ \tilde{f} \approx \tilde{\phi}_{dn-2} \circ \tilde{g}$. By 1.14 there exists $\tilde{h}: SU_{dn-1} \rightarrow SU_{dn-1}$ with $r'_{dn-2} \circ h \approx h \circ r'_{dn-2}$. Hence, $r'_{dn-2} \circ \tilde{h} \circ \tilde{\phi} \circ g \approx r'_{dn-2} \circ \tilde{\phi} \circ f$ and $[\tilde{h} \circ \tilde{\phi} \circ g] - [\tilde{\phi} \circ f] \in \operatorname{im} j_*: [M(n, d, \lambda), K(dn-1, Z)] \rightarrow [M(n, d, \lambda), SU_{dn-1}]$ where $j: K(dn-1, Z) \rightarrow SU_{dn-1}$ is the fiber of r'_{dn-2} .

Let ι , w_{dn-1} , \tilde{w}_{dn-1} , v_{dn-1} be generators of the infinite cyclic groups $QH^{dn-1}(K(Z, dn-1), Z)$, $QH^{dn-1}(SU_{dn-1}, Z)$, $QH^{dn-1}(G(n, d), Z)$ and $QH^{dn-1}(M(n, d, \lambda), Z)$ respectively then:

$$Qj^* w_{dn-1} = (dn/2 - 1)!\iota,$$

$$Q\tilde{\phi}^* w_{dn-1} = w_{dn-1}, \ Q\tilde{h}_{\lambda}^* w_{dn-1} = \lambda v_{dn-1}$$

$$Q\tilde{h}^* w_{dn-1} = \pm w_{dn-1}, \ Q(\tilde{h}_{\lambda'} \circ \alpha)^* w_{dn-1} = \pm \lambda' v_{dn-1}$$

As $[h \circ \tilde{\phi} \circ g] - [\tilde{\phi} \circ f] \in \operatorname{im} j_*$,

$$Q(g * \tilde{\phi} * h^*) w_{dn-1} \equiv Q(f * \tilde{\phi}^*) w_{dn-1} \mod (dn/2 - 1) !$$

and substituting the corresponding values $\lambda v_{dn-1} \ge \pm \lambda' v_{dn-1} \mod (dn/2-1)!$ and $\lambda \equiv \pm \lambda' \mod (dn/2-1)!$,

3. Proof of Theorem B

Put $M(\lambda) = M(n, d, \lambda)$, k = k(n, d), G = G(n, d). If $\lambda \equiv \pm \lambda' \mod k$ then $(\lambda, k) = (\lambda', k)$. As $\lambda/(\lambda, k)$ and $k/(\lambda, k)$ are relatively prime there exist $a, b \in Z$ so that

(1) $a(\lambda/(\lambda, k)) + b(k/(\lambda, k)) = 1$

(2)
$$(a, k/(\lambda, k)) = 1$$

By (1) $(a\lambda'/(\lambda,k))\lambda \equiv \lambda' \mod k$. Put $m = a\lambda'/(\lambda,k)$. Hence, there exists a commutative diagram

Now, $h_k: S^{dn-1} \to S^{dn-1}$ can be lifted to $\chi: S^{dn-1} \to G$ and therefore $h_{k/(\lambda,k)}: S^{dn-1} \to S^{dn-1}$ can be lifted to $\chi': S^{dn-1} \to M(\lambda)$.

By (2) and since $\lambda'/(\lambda', k)$ and $k/(\lambda', k)$ are relatively prime $(m, k/(\lambda', k)) = 1$ and there exist integers α, β so that $\beta m - \alpha(k/(\lambda', k)) = \beta a \lambda'/(\lambda', k) - \alpha k/(\lambda', k) = 1$. As k is even, $\lambda' \text{ odd} - k/(\lambda', k)$ is even and m is odd, replacing α, β by $\alpha + m$, $\beta + k/(\lambda', k)$ if necessary one may assume that α is even.

Let $m: S^{dn-1} \times S^{dn-1} \to S^{dn-1}$ be a map of type (2,1). Define:

$$g_1: M(\lambda') \times S^{dn-1} \to M(\lambda), \ g_2: M(\lambda') \times S^{dn-1} \to S^{dn-1}$$

by

$$g_1 = \mu_{M(\lambda)}(\bar{h}_m \times \chi'), \ g_2 = m(h_{\alpha/2} \circ \bar{f} \times h_{\beta})$$

where $\mu_{M(\lambda)}$ is the *H*-structure of $M(\lambda)$ (which exists by [7]), $h_{\alpha/2}, h_{\beta}: S^{dn-1} \to S^{dn-1}$ maps of degrees $\alpha/2$ and β respectively, $\tilde{f}: M(\lambda') \to S^{dn-1} \approx M(\lambda')/G$ the projection. Let $g: M(\lambda') \times S^{dn-1} \to M(\lambda) \times S^{dn-1}$ be induced by the g_i 's. Now, if $w_{\lambda}, w_{\lambda'}$, and 1_s are the generators of $QH^{dn-1}(M(\lambda), Z) \approx Z$, $QH^{dn-1}(M(\lambda'), Z)$, and $QH^{dn-1}(S^{dn-1}, Z)$ respectively, then

$$QH^{dn-1}(g,Z)w_{\lambda} = mw_{\lambda'} + (k/(\lambda,k))\mathbf{1}_{s}, \ QH^{dn-1}(g,Z)\mathbf{1}_{s} = \alpha w_{\lambda'} + \beta\mathbf{1}_{s}$$

and $QH^{dn-1}(g,Z)$ is an isomorphism. As $QH^m(g,Z)$ is an isomorphism for m < dn-1, $QH^*(g,Z)$ is an isomorphism and as $H^*(M(\lambda) \times S^{dn-1},Z)$ and $H^*(M(\lambda') \times S^{dn-1},Z)$ are free (associative and commutative graded) algebras $H^*(g,Z)$ is an isomorphism and g is a homotopy equivalence.

References

1. R. Bott, The stable homotopy of the classical groups, Ann. of Math. 70 (1959), 313-337-

2. M. Curtis, and G. Mislin, 2 new H-spaces, Bull. Amer. Math. Soc. 4 (1970), 851.

3. P. Hilton, and J. Roitberg, On principal S^3 bundles over spheres, Ann. of Math. (1) 90 (1969), 91–107.

4. J. Stasheff, Manifolds of the homotopy type of a (non-Lie) group, Bull. Amer. Math. Soc. 75 (1969), 998-1000.

5. N. E. Steenrod, The Topology of Fiber Bundles, Princeton University Press, 1951.

6. A. Zabrodsky, On spherical classes in the cohomology of H-spaces, H-spaces Conference, Neuchatel, 1970, Lecture notes in Math., Springer-Verlag, 196, 25-33.

7. A. Zabrodsky, On the construction of new finite CW H-spaces. Mimeographed.

THE HEBREW UNIVERSITY OF JERUSALEM